A. 50 days

B. 60 days

C. 70 days

D. 80 days

A. 16 days

B. 18 days

C. 20 days

D. 25 days

A. 2 days

B. 3 days

C. 5 days

D. 6 days

A. 4 days

B. 6 days

C. 8 days

D. 10 days

## A works twice as fast as B. If B can complete a work in 12 days independently. The number of days in which A and B can together finish the work will be ______.

A. 4 days

B. 6 days

C. 8 days

D. 10 days

Explanation

If B takes 12 days to finish the work, then A takes 6 days to finish the same work.
If A can complete a work in x days and B can complete the same work in y days, then, both of them together can complete the work in x y/ x+ y days.
Therefore, the number of days taken by A and B together to finish the same work will be:
= 6 × 12/18= 4 days.

A. 16

B. 20

C. 24

D. 28

A. 8 days

B. 11 days

C. 13 days

D. 17 days

A. 12 days

B. 14 days

C. 16 days

D. 18 days

A. 8

B. 10

C. 12

D. 18

A. 14

B. 16

C. 18

D. 20

A. 10

B. 12

C. 14

D. 16

A. 10/3 days

B. 5 days

C. 13/2 days

D. 8 days

A. 5.5 days

B. 7.75 days

C. 9 days

D. 10 days

A. 30 hours

B. 40 hours

C. 50 hours

D. 55 hours

A. 12 days

B. 15 days

C. 18 days

D. 20 days

A. 16

B. 18

C. 20

D. 21

A. 10 days

B. 15 days

C. 20 days

D. 25 days

A. 6

B. 8

C. 10

D. 12

A. 6 days

B. 8 days

C. 12 days

D. 16 days

A. 3 days

B. 5 days

C. 6 days

D. 7 days

A. 3/4 day

B. 1 day

C. 1.5 days

D. 2 days

A. 6 days

B. 8 days

C. 10 days

D. 12 days